Доводка выхлопной системы атмосферных ДВС

Конструкция выхлопной системы для двигателей без турбокомпрессора (так называемых «атмосферников») несколько отличается от конструкции выхлопной системы для турбированных двигателей, причём большая часть отличий относится к «головной» части выхлопной системы и в частности к выпускному коллектору.

Цель выхлопной системы «атмосферников» такая же, как и у турбированных двигателей – с максимально возможной скоростью и с созданием минимального противодавления отвести ОГ в атмосферу, но на этом все сходства заканчиваются. Дальше начинаются компромиссы, необходимые для соблюдения требований по шумности, экологичности и компоновке, причём некоторые из этих компромиссов неизбежно приводят к определённым потерям мощности.

Выпускной коллектор

Конструкция выпускного коллектора оказывает наиболее существенное влияние как на мощностную характеристику двигателя, так и на развиваемую им максимальную мощность. «Правильность» конструкции выпускного коллектора определяется огромным количеством факторов. Важным фактором является конструкция участка слияния потоков ОГ, отводимых от отдельных цилиндров. Существует два варианта конструкции таких участков для четырёхцилиндрового двигателя: «421» и «41». В варианте «421» два первичных выпускных трубопровода объединяются в один вторичный, после чего два получившихся вторичных трубопровода объединяются между собой. В варианте «41» четыре первичных выпускных трубопровода сходятся в одной точке. Оба варианта имеют свои преимущества, но в варианте «41» импульсы выхлопов взаимодействуют друг с другом таким образом, что достигается максимальный крутящий момент. Ниже приведено схематичное изображение обоих вариантов:


Диаметр первичных выпускных трубопроводов

При небольшом объёме отводимых ОГ уменьшение диаметра первичных выпускных трубопроводов позволяет увеличить скорость протекания по ним потока ОГ. Чем больше предполагаемый объём отводимых ОГ, тем больше должен быть диаметр первичных выпускных трубопроводов.

Объём отводимых ОГ зависит от рабочего объёма, частоты вращения вала и нагрузки двигателя. Чем больше объём каждого цилиндра, тем больше должен быть диаметр отходящего от этого цилиндра первичного выпускного трубопровода.

Сказанное действительно и для частоты вращения вала двигателя: чем больше эта частота, тем больший объём ОГ выпускается из цилиндра за единицу времени и тем большим должен быть диаметр отводящего эти ОГ первичного выпускного трубопровода. Объём выпускаемых из цилиндра ОГ увеличивается и с увеличением нагрузки двигателя.

Таким образом, оптимальные размеры первичных выпускных трубопроводов определяются в каждом конкретном случае как компромисс между потребностью увеличить скорость протекания потока ОГ и потребностью увеличить пропускную способность трубопровода.

При чрезмерно большом диаметре первичного выпускного трубопровода невозможно обеспечить требуемую скорость протекания потока ОГ. Снижение скорости этого потока приводит к снижению крутящего момента, причём значительное снижение этой скорости приводит также и к снижению развиваемой двигателем максимальной мощности.

Разумный компромисс между скоростью и пропускной способностью позволяет обеспечить как хороший крутящий момент на малых оборотах, так и достаточную тягу на высоких оборотах.

Длина первичных выпускных трубопроводов

Длина первичных выпускных трубопроводов оказывает заметное воздействие на мощностные характеристики двигателя. Увеличение этой длины улучшает тягу на низких оборотах, в то время как её уменьшение улучшает тягу на высоких оборотах. Указанная зависимость объясняется той зависящей от длины выпускных трубопроводов разницей во времени, с которой ударные волны, распространяющиеся в выпущенных из цилиндра ОГ, отражаются и возвращаются обратно в цилиндр. Эти ударные волны возникают в первичном выпускном трубопроводе в момент открытия выпускного клапана, причём, пройдя по всему трубопроводу, эти волны отражаются от выпускного коллектора и частично возвращаются обратно в цилиндр. Вернувшись в цилиндр, такие волны способствуют удалению из цилиндра ОГ и всасыванию в цилиндр воздуха. Увеличение количества воздуха и топлива в цилиндре приводит к увеличению развиваемой двигателем мощности. Данный эффект также известен как эффект (резонансной) продувки цилиндра, причём обеспечение такого эффекта является одной из основных задач правильно спроектированного выпускного коллектора. Выполнение всех первичных выпускных трубопроводов имеющими одинаковую длину позволяет придать этому эффекту большую регулярность. В результате подсос воздуха в цилиндры становится более равномерным и дополнительно усиливается за счёт резонансных эффектов. При этом газообмен в цилиндре и в частности удаление из него ОГ и впуск воздуха осуществляется не только за счёт хода поршня, но и за счёт описанного выше эффекта продувки цилиндра. При разработке «настроенных» выпускных коллекторов для «Субару» нередко забывают о том, что длина выпускного канала цилиндра фактически также относится к выпускному трубопроводу, и учитывать нужно именно суммарную длину трубопровода и этого канала. Вопрос усложняется тем, что различные выпускные каналы автомобилей «Субару» имеют различную длину. Нежелание учитывать эти различия приводит к невозможности в полной мере воспользоваться преимуществами, которые способен обеспечить правильно спроектированный «настроенный выпуск».

Ниже схематично показаны выпускные каналы цилиндров «Субару». Как видно на рисунке, каналы А длиннее каналов Б.

Как становится очевидно из вышесказанного, основные затраты времени при испытаниях бывают связаны с правильным подбором длины первичных выпускных трубопроводов, в ходе которого приходится учитывать длину выпускных каналов цилиндров.

Конструкция коллектора

В выпускном коллекторе первичные выпускные трубопроводы объединяются в основной трубопровод выхлопной системы. Известны самые различные варианты выполнения соответствующего участка коллектора – от простых и недорогих в изготовлении до весьма сложных и затратных. Простейший способ объединения первичных выпускных трубопроводов показан в левой части приведённой ниже иллюстрации.

В данном варианте в центре, между сходящимися трубопроводами, образуется застойная область, в которой возникают сильные затормаживающие поток ОГ завихрения. Отсутствие такой области является основным преимуществом более совершенных коллекторов. Вариант выполнения такого коллектора показан в правой части приведённой выше иллюстрации. Как видно на рисунке, в данном варианте первичные выпускные трубопроводы сходятся воедино без образования застойной области. Данный вариант сравнительно недорог в изготовлении и обеспечивает неплохие результаты. При этом эффект достигается просто за счёт соответствующей деформации сходящихся концевых участков труб.

Однако наиболее совершенным техническим решением является показанный ниже коллектор, выполненный в виде отдельной детали, в которую вставляются концевые участки первичных выпускных трубопроводов. Показанный ниже образец производства фирмы «Burns Stainless» является одним из лучших доступных в продаже выпускных коллекторов. Обратите внимание на то, как выполнен участок слияния потоков ОГ, поступающих из первичных выпускных трубопроводов.

Длина коллектора

Длина коллектора также влияет на мощностную характеристику двигателя. Обычно с увеличением длины коллектора пик мощности смещается в сторону высоких оборотов. В любом случае, длина коллектора должна быть достаточной для сведения к минимуму завихрений, возникающих в ходе взаимного слияния потоков ОГ, поступающих из первичных выпускных трубопроводов. Недостаточная длина соответствующего участка коллектора приводит к возникновению завихрений, способных серьёзно затормозить поток ОГ. Однако у коллектора существует и другой важный параметр, подбор которого невозможен без обширных испытаний. Этим параметром является внутренний объём коллектора, от которого тоже во многом зависит мощностная характеристика двигателя.


Ширина коллектора

Ширина (или внутренний объём) коллектора в основном определяет характер взаимодействий, возникающих между отдельными выхлопами или импульсами выхлопа. Слишком большая ширина коллектора препятствует возникновению между такими импульсами желательных взаимодействий, приводящих к возникновению описанного ранее эффекта резонансной продувки цилиндра, а также приводит к снижению скорости истечения ОГ. Недостаточная ширина коллектора, напротив, способна затруднить свободное истечение ОГ за счёт создания слишком высокого противодавления. «Правильная» в каждом конкретном случае ширина коллектора определяется лишь путём испытаний.

Углы конусности

Очевидно, что чем меньше угол конусности выпускного коллектора, и в общем случае чем плавнее любое изменение проходного сечения любого элемента выхлопной системы, тем лучше. Однако именно в выпускном коллекторе угол конусности, под которым проходное сечение этого коллектора переходит в проходное сечение основного трубопровода выхлопной системы, является одним из важнейших факторов. Любое резкое сужение выпускного коллектора способно сильно помешать процессу свободного истечения ОГ.

Проходной диаметр каждого из участков, на которых первичные выпускные трубопроводы вливаются в главное внутреннее пространство выпускного коллектора, должен как можно точнее соответствовать диаметру выпускных каналов цилиндров. В противном случае в выпускном коллекторе неизбежно возникнут дополнительные нежелательные завихрения. Нельзя забывать, что завихрения в выпускном коллекторе оказывают большее негативное воздействие на протекание потока ОГ, чем завихрения в любой иной части выхлопной системы. По данным многих заслуживающих доверия специалистов, уменьшить возникающие в коллекторе завихрения можно путём ступенчатого изменения площади проходного сечения выпускного коллектора. Однако это приводит к усложнению и удорожанию коллектора.

Кроме того, существенные ограничения на конструкцию коллектора накладывает компоновка подкапотного пространства автомобиля. То, что выпускные каналы цилиндров двигателей «Субару» расположены с противоположных сторон двигателя, существенно усложняет задачу конструирования выпускного коллектора для этих автомобилей. Для двигателей с горизонтальным оппозитным расположением цилиндров сложность изменения длины первичного выпускного трубопровода сравнима со сложностью изготовления нового выпускного коллектора, вследствие чего при испытаниях процесс определения правильной длины этих трубопроводов занимает очень много времени. Сделать так, чтобы длина всех первичных выпускных трубопроводов с учётом относящихся к ним выпускных каналов цилиндров была строго одинакова, а сами эти трубопроводы при этом приемлемым образом вписались в компоновку подкапотного пространства, является непростой задачей, а ещё более сложная задача тонкой настройки выпуска для оптимизации эффекта резонансной продувки цилиндров, для чего длины трубопроводов индивидуально модифицируются с шагом 0,5 – 1 дюйм, и вовсе требует от конструктора большого таланта.

Каталитические нейтрализаторы ОГ

Наличие собственного динамометрического стенда позволяет проводить сравнительное тестировании оснащённых и не оснащённых каталитическими нейтрализаторами ОГ выхлопных систем «атмосферных» автомобильных двигателей. По результатам испытаний можно утверждать, что отсутствие каталитического нейтрализатора не способно принести существенного выигрыша по сравнению с присутствием в выхлопной системе правильно спроектированного каталитического нейтрализатора ОГ.

ажным фактором, определяющим, насколько серьёзное препятствие на пути потока ОГ будет представлять собой каталитический нейтрализатор, является угол конусности его корпуса. Поскольку проходное сечение корпуса каталитического нейтрализатора существенно превышает проходное сечение входящих и выходящих из этого корпуса выхлопных трубопроводов, слишком резкое изменение этого проходного сечения способно существенно затормозить поток ОГ.

Сказанное в равной степени относится к каталитическим нейтрализаторам как турбированных двигателей, так и «атмосферников». Кроме того, необходимо обеспечить прохождение поступающих вовнутрь корпуса каталитического нейтрализатора ОГ сквозь всё рабочее сечение активных элементов этого нейтрализатора. В случае, когда потоком ОГ используется не вся площадь сечения этих активных элементов, каталитический нейтрализатор ОГ не будет работать с должной эффективностью. По названной причине плавное расширение корпуса каталитического нейтрализатора на входе даже важнее плавного сужения этого корпуса на выходе.


Часть выхлопной системы, расположенная после каталитического нейтрализатора по ходу потока ОГ

Разработать «правильную» часть выхлопной системы, расположенную после каталитического нейтрализатора по ходу потока ОГ, проще, чем разработать «правильный» выпускной коллектор. Основной задачей остаётся поддержание максимально возможной скорости истечения ОГ. Слишком широкая труба приводит к снижению скорости потока ОГ и потере части крутящего момента на малых оборотах. Слишком узкая труба приводит к снижению максимальной мощности (мощности на высоких оборотах). Оптимальное в каждом конкретном случае решение является, как всегда, результатом компромисса. Важно обеспечить гладкую внутреннюю поверхность трубопроводов и правильно использовать технологию гибки труб. Глушитель должен создавать как можно меньшее сопротивление потоку ОГ и одновременно с этим в достаточной мере снижать шумность выхлопа. Собственно говоря, все «хитрости» конструирования задней части выхлопной системы ограничиваются вышесказанным. Очевидно, что эта часть выхлопной системы действительно заметно проще выпускного коллектора.

Дата публикации: 25.07.2007